Lecture 24: Large Sets fool Large Linear Tests

- Let $A \subseteq\{0,1\}^{n}$ be a set of size 2^{n-t}
- We want to claim that the uniform distribution over the set A fools (most) large linear tests
- For example, consider A to be the set of n-bit strings that start with $t 0 \mathrm{~s}$
- Consider any linear test S such that the support of S is restricted only to the first t indices. Then, the output of this linear test is completely biased (it always outputs 0)
- On the other hand, if S has support that is larger than t, then the output of the linear test is uniformly random bit. That is, the uniform distribution over A fools this linear test
- In general, we cannot expect to fool all large support linear tests. For example, we consider A to $\overline{b e}$ the n-bit strings with even number of 1 s . The uniform distribution over A does not fool the linear test corresponding to $S=N-1$

Large Sets fool Large Linear Tests

- Let $A \subseteq\{0,1\}^{n}$ such that $|A|=2^{n-t}$
- Let $\mathbf{1}_{\{A\}}$ be the indicator variable for the subset A
- Note that the uniform distribution over A is represented by the function

$$
\frac{1}{|A|} \mathbf{1}_{\{A\}}
$$

- Note that the bias of the output of the linear test S is

$$
\operatorname{Bias}_{\mathbb{A}}(S):=\frac{N}{|A|} \widehat{\mathbf{1}_{\{A\}}}(S)
$$

- Let us evaluate the sum of all the biases corresponding to linear tests S such that $|S|=k$

$$
\sum_{S \in\{0,1\}^{n}:|S|=k} \operatorname{Bias}_{\mathbb{A}}(S)^{2}=\left(\frac{N}{|A|}\right)^{2} \sum_{S \in\{0,1\}^{n}:|S|=k} \widehat{1_{\{A\}}}(S)^{2}
$$

- Recall that the KKL Lemma states that, for any $\delta \in(0,1)$ and $f:\{0,1\}^{n} \rightarrow\{+1,0,-1\}$, we have

$$
\sum_{S \in\{0,1\}^{n}} \delta^{S S \mid} \widehat{f}(S)^{2} \leqslant \mathbb{P}\left[f(x) \neq 0: x \leftarrow_{\leftarrow}^{\Phi}\{0,1\}^{n}\right]^{2 / 1+\delta}
$$

- Note that, we have

$$
L H S \geqslant \sum_{S \in\{0.1\}^{n}:|S|=k} \delta^{k} \widehat{f}(S)^{2}
$$

- So, we conclude that

$$
\sum_{S \in\{0,1\}^{n}:|S|=k} \widehat{f}(S)^{2} \leqslant \frac{1}{\delta^{k}} \mathbb{P}\left[f(x) \neq 0: x \stackrel{s}{\leftarrow}_{\leftarrow}\{0,1\}^{n}\right]^{2 / 1+\delta}
$$

- Substituting $f=\mathbf{1}_{\{A\}}$, we get

$$
\begin{aligned}
\sum_{S \in\{0,1\}^{n}:|S|=k} \operatorname{Bias}_{\mathbb{A}}(S)^{2} & \leqslant\left(\frac{N}{|A|}\right)^{2} \cdot \frac{1}{\delta^{k}} \cdot\left(\frac{|A|}{N}\right)^{2 / 1+\delta} \\
& =\frac{1}{\delta^{k}} \cdot\left(\frac{N}{|A|}\right)^{2 \delta / 1+\delta} \\
& \leqslant \frac{1}{\delta^{k}}\left(\frac{N}{|A|}\right)^{2 \delta}=2^{2 t \delta-k \operatorname{lge} \ln \delta}
\end{aligned}
$$

- Now, we choose δ that minimizes the RHS above. That value of δ is $\delta=k \lg e / 2 t$
- Substituting this value of δ we get

$$
\sum_{S \in\{0,1\}^{n}:|S|=k} \operatorname{Bias}_{\mathbb{A}}(S)^{2} \leqslant\left(\frac{2 \mathrm{e} t}{k \lg \mathrm{e}}\right)^{k}
$$

- The average bias is

$$
\binom{n}{k}^{-1} \sum_{S \in\{0,1\}^{n}:|S|=k} \operatorname{Bias}_{\mathbb{A}}(S)^{2} \leqslant\left(\frac{2 \mathrm{e}}{\lg \mathrm{e}} \cdot \frac{t}{n}\right)^{k}=(O(t / n))^{k}
$$

- The bound we obtain above is essentially tight
- Consider A such that the first t bits of its elements are all 0
- Note that $\binom{t}{k}$ linear tests have bias 1
- The remaining linear tests have bias 0
- So, the average bias is

$$
\binom{t}{k}\binom{n}{k}^{-1} \geqslant\left(\frac{1}{\mathrm{e}} \cdot \frac{t}{n}\right)^{k}
$$

